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Fractons

▶ Recently fractons have gained the attention of physicits.

▶ They are particles with restricted mobility.

▶ They are usually divided into three types: ,

• Fractons: no mobility.

• Lineon: mobility along a line.

• Planon: mobility along a plane.

▶ Characterized by extensive ground state degeneracy.

▶ Exhibit subsystem symmetries.

▶ Potential candidate for building self-correcting quantum memory.

▶ We are yet to find a broad framework which describes the fracton
phases of matter.
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Strange correlator
▶ Strange correlator was introduced as a diagnosis to detect SPT

order. [You et. al. [1]]

▶ They defined strange correlator as

C (r , r ′) =
⟨Ω|ϕ(r)ϕ(r ′) |Ψ⟩

⟨Ω|Ψ⟩
(1)

where ⟨Ω| is a product state, |Ψ⟩ is a wavefunction and ϕ is any
local operator. When |Ψ⟩ is a nontrivial SPT C (r , r ′) will saturate
to a constant or decay as a power law when |r − r ′| → ∞.

▶ An intuitive picture

Figure 1: Caption
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Cont

▶ Later it was extended to topological order.[Vanhove et. al.[2]]

▶ The statement is that taking an overlap of LRE state with product
state give you partition functions of critical lattice models.

Z = ⟨Ω|Ψ⟩ (2)

where ⟨Ω| is the product state and |Ψ⟩ is the LRE state.

▶ For example, taking |Ψ⟩ to be the ground state of string net model
with Ising fusion category and ⟨Ω| to be a particular product state,
gives Z as the partition function of 2d classical Ising model which
has a criticality.

▶ In this talk, we will look at a similar concept for some examples of
fracton orders.
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Notation

Cell-complex:
Symbol Meaning Examples

σi elementary cell vertex, edge, plaquette.

σ∗
i elementary dual-cell

vertex, edge, plaquette
on the dual lattice.

∆i/∆
∗
i set of cells/dual-cells

set of vertices on the lattice.
set of vertices on the dual-lattice.

|ψ⟩∆i
⊗

σi∈∆i
|ψ⟩ |+⟩∆v =

⊗
σv∈∆v

|+⟩.

Ci/C
∗
i

Chain/dual chain which is
formal linear combination of σi

Cv , Ce or C∗
v , C

∗
e

ci/c
∗
i A particular chain/ cochain

cv = σv1 + σv2 for v1, v2 two vertices.
c∗v = σ∗

v1 + σ∗
v2 for v∗

1 , v
∗
2 dual vertices.

X (c) X (c) =
∏

σi∈ci
X (σi ) X (cv ) = X (σv1)X (σv2).

Z(c) Z(c) =
∏

σi∈ci
X (σi ) Z(cv ) = Z(σv1)Z(σv2).

▶ Pauli-x, Pauli-y and Pauli-z operators denoted by X , Y and Z respectively.



Notation
Boundary map:

∂
Usual boundary

operator

∂∗ Usual coboundary
operator

δ
Unusual boundary

operator

δ∗
Unusual coboundary

operator

z cycle, ∂z = 0, δz = 0

z = σe1 + σe2 + σe3 + σe4 , ∂z = 0.

z∗
dual cycle,

∂∗z∗ = 0, δ∗z∗ = 0
z∗ = σv1 + σv2 + σv3 + σv4 , ∂

∗z∗ = 0.



Long range entanglement from cluster states
▶ Cluster states are highly entangled states of qubits which are used as

a resource state for one-way quantum computer.

▶ Performing measurements on them can produce long range
entangled states. [Rausendorff et al.[3]],[Tandivasadakrn et al[4]]

▶ As an example consider the 1d lattice consisting of vertices and
edges. The cluster state is defined as

|ΨC⟩ =
∏
e∈∆e

∏
v∈∂e

CZv,e |+⟩∆v |+⟩∆e , CZv,e = |0⟩v ⟨0|+ |1⟩v ⟨1| ⊗ Ze

(3)

Stabilized by

X (σe)
∏
v∈∂e

Z(σv ), X (σv )
∏

e∈∂∗v

Z(σe) (4)
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Cont

▶ Performing measurements on the vertices in X basis with
post-selection ∆v ⟨+| |ΨC⟩, gives the GHZ state

|GHZ ⟩ = 1√
2
(|0...0⟩+ |1...1⟩) (5)

▶ This idea has been used to prepare abelian and non-abelian
topological order and certain fracton orders. [Tandivasadakrn et
al[4]]

▶ We will look at this idea with examples mainly focusing on fractons.
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Plaquette Ising model
▶ Hamiltonian

HqPIM = −
∑
σi,j

Z (σi,j)Z (σi,j+1)Z (σi+1,j)Z (σi+1,j+1) (6)

defined on a 2d square lattice with d.o.f on the vertices. Subscript
i , j denote the lattice coordinates (x = i , y = j).

▶ It has subsystem symmetries along lines
∏

i X (σi,j) and
∏

j X (σi,j).

▶ Let the ground state be
∣∣∣ΨqPIM

GS

〉
, stabilized by the terms in the

Hamiltonian.

▶ The excitations can move only along lines and hence are fractons.
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Preparation from product state
▶ Introduce an ancilla d.o.f on the plaquettes of the 2d square lattice.

▶ Let the ancilla be in the ground state of the Hamiltonian

Htrivial = −
∑
σp

X (σp) (7)

▶ Now consider the cluster state∣∣∣ΨqPIM
C

〉
=
∏
σp

∏
σv∈∂σp

CZv ,p |+⟩∆v |+⟩∆p (8)

▶ Measure d.o.f on the plaquettes(ancilla).

|Ψ⟩ = ⟨+|∆p

∣∣∣ΨqPIM
C

〉
(9)

▶ |Ψ⟩ is stabilized by
∏

v∈∂p Zv and subsystem line symmetries∏
i X (σi,j) and

∏
j X (σi,j).

▶ |Ψ⟩ = |Ψ⟩qPIMGS .
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With transverse field
▶ Now we add a transverse field to this Hamiltonian

HTFPI = −
∑
σi,j

Z(σi,j)Z(σi,j+1)Z(σi+1,j)Z(σi+1,j+1)− λ
∑
σi,j

X (σi,j) (10)

▶ The Hamiltonian HTFPI is KW dual to another Hamiltonian

H̃TFPI = −λ
∑
σr,s

Z(σr,s)Z(σr+1,s)Z(σr,s+1)Z(σr+1,s+1)−
∑
σr,s

X (σr,s) (11)

▶ At λ = 1, both Hamiltonians are same and hence KW is a self
duality.

▶ This is analogous to the story we are familiar with 1d transverse field
Ising model.
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Kramers-Wannier transformation

▶ We can define Kramers-Wannier transformation

KW = ⟨+|∆v UqPIM
CZ |+⟩∆p (12)

▶ KW is same as gauging a symmetry.

▶ This follows from the fact that

KW = KW
∏

σv∈line

X (σv ),
∏

σp∈line

X (σp) KW = KW (13)

▶ KW also satisfies

X (σp) KW = KW
∏

σv∈∂σp

Z (σv ),
∏

σp∈∂∗σv

Z (σp)KW = KW X (σv )

(14)

▶ This establishes the KW duality between HTFPI and H̃TFPI using
measurements.
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Z (σp)KW = KW X (σv )

(14)

▶ This establishes the KW duality between HTFPI and H̃TFPI using
measurements.
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Non-invertible fusion rules

▶ One can define similarly

KW ′ = ⟨+|∆p UqPIM
CZ |+⟩∆v (15)

▶ Fusion:

KW ′ ◦ KW =
∏
j

(
1 +

∏
i

X (σi,j)

)∏
i

1 +
∏
j

X (σi,j)


=
∑

subsystem line like symmetries

(16)

KW ◦ KW ′ =
∏
p

(
1 +

∏
q

X (σp,q)

)∏
q

(
1 +

∏
p

X (σp,q)

)
=
∑

subsystem line like symmetries

(17)
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Strange correlator

▶ Consider the product state

|ω(K )⟩ =
⊗

σv∈∆v

e−KX |0⟩ (18)

▶ The overlap

Z2d−cPIM = N
〈
ω(K )

∣∣ΨqPIM
〉
GS

=
∑

sσ0
=±1

e
−K

∑
σp∈∆p

s(δσp) (19)

give the partition function of classical plaquette Ising model.

▶ This is the overlap between fractonic ground state and a product
state. Hence it can be interpreted as strange correlator.
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CSS codes
▶ A general CSS code can be represented by the following chain

complex

0 → CZ
δZ−⇀↽−
δ∗Z

Cq
δX−⇀↽−
δ∗X

CX → 0 (20)

CZ , Cq and CX are free abelian groups generated by cells in ∆Z , ∆q

and ∆X [Kubica,Yoshida[5]]. They can also be thought of as vector
space with F2 (characteristic 2 field) coefficients.

▶ The maps satisfy nilpotency conditions δX ◦ δZ = 0 and δ∗Z ◦ δ∗X = 0.

▶ CSS code Hamiltonian

HCSS = −
∑

σβ∈∆Z

Z (δZσβ)−
∑

σα∈∆X

X (δ∗Xσα) (21)

▶ Consider Hq = Ker δX
Im δZ

and Hq =
Ker δ∗Z
Im δ∗X

. Logical operators

Z (zq) s.t zq ∈ Hq X (z∗q ) s.t zq ∈ Hq (22)
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With transverse field
▶ Hamiltonian with transverse field

HCSS = −
∑

σi∈∆q

X (σi )− λ
∑

σβ∈∆Z

Z(δZσβ)

with symmetry X (z∗q )(δ
∗
Z z

∗
q = 0)

(23)

HCSS,dual = −
∑

σi∈∆q

Z(δ∗Zσi )− λ
∑

σβ∈∆Z

X (σβ)

with symmetry X (zZ )(δZ zZ = 0)

(24)

▶ As an example consider 0 → C2
∂2−⇀↽−
∂∗
2

C1
∂0−⇀↽−
∂∗
0

C0 → 0

Hgauge = −
∑

σ1∈∆1

X (σ1)− λ
∑

σ2∈∆2

Z(∂2σ2) (25)

with symmetry X (z1)(∂
∗
2 z1 = 0)including the gauge symmetry X (∂∗

0 σ0)

HIsing = −
∑

σ1∈∆1

Z(∂∗
2 σ1)− λ

∑
σ2∈∆2

X (σ2) (26)

with symmetry
∏

σ2∈∆2

X (σ2)

This is the Ising model-Ising gauge theory duality.
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Kramers-Wannier transformation

▶ KW = ⟨+|⊗∆qUCZ |+⟩⊗∆Z and KW′ = ⟨+|⊗∆ZUCZ |+⟩⊗∆q .

▶ Non-invertible fusion rules:

KW ◦ KW′ =
1

2|∆Z |

∑
δZ zZ=0

X (zZ ) (27)

KW′ ◦ KW =
1

2|∆q|

∑
δ∗Z z

∗
q =0

X (z∗q ) (28)

▶ Strange correlator:

Zsub = N × ⟨ω(K )|KW′|+⟩∆Z , (29)

with ⟨ω(K )| =
⊗

σi∈∆q
⟨0|eKXσi .

Zsub =
∑

{s(σβ)=±1}σβ∈∆Z

exp
[
K
∑

σi∈∆q

s(δ∗Zσi )
]

(30)
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X-cube model
▶ Hamiltonian

HX−cube = −
∑
c

∏
e∈∂c

Ze −
∑
v

∏
e∈δ∗

1
v

Xe −
∑
v

∏
e∈δ∗

2
v

Xe −
∑
v

∏
e∈δ∗

3
v

Xe (31)

▶ Hamiltonian with transverse field

HX−cube = −
∑
c

∏
e∈∂c

Ze −
∑
e

Xe with subsytem one form symmetry (32)

H3d−qPIM = −
∑
p

∏
v∈∂p

Zv −
∑
v

Xv with subsystem plane symmetry (33)

Figure 2: The 3d classical plaquette Ising model and its global symmetry.
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▶ KW = ⟨+|∆e UX−cube
CZ |+⟩∆c and KW ′ = ⟨+|∆c U3d−qPIM

CZ |+⟩∆e

▶ Fusion rules:

KW ′ ◦ KW =
∑

subsystem one form symmetries

KW ◦ KW ′ =
∑

subsystem plane like symmetries
(34)

▶ Strange correlator:

Z3d−cPIM = N ⟨ω(K )|KW ′ |+⟩∆c

=
∑

sσc=±1

eK
∑

σe∈∆e
s(δ∗σe) (35)

Partition function of 3d classical plaquette Ising model.
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Checkerboard model
▶ Hamiltonian

Hcheck = −
∑
c(s)

∏
v∈∂c(s)

Zv −
∑
c(s)

∏
v∈∂c(s)

Xv (36)

▶ Hamiltonian with transverse field

Hcheck = −
∑
c(s)

∏
v∈∂c(s)

Zv −
∑
v

Xv with subsystem line symmetry

HtIM = −
∑
v

∏
c(s)∈δ∗

Z
v

Z
c(s)

−
∑
c(s)

X
c(s)

with subsystem plane symmetry
(37)

Figure 3: The tetrahedral Ising model and it’s global symmetry
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▶ KW = ⟨+|∆c(s) U check
CZ |+⟩∆v and KW ′ = ⟨+|∆v U tIM

CZ |+⟩∆c(s)

▶ Fusion rules:

KW ′ ◦ KW =
∑

subsystem line like symmetries

KW ◦ KW ′ =
∑

subsystem plane like symmetries
(38)

▶ Strange correlator:

ZtIM = N ⟨ω(K )|KW ′ |+⟩∆c(s)

=
∑

sσ
c(s)

=±1

eK
∑

σv∈∆v
s(δ∗σv ) (39)

Partition function of tetrahedral Ising model.
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Haah’s code
▶ Hamiltonian

HHaah =
∑
c

Ac −
∑
c

Bc (40)

▶ Hamiltonian with transverse field

HHaah = −
∑
c

Ac −
∑
v1

Xv1 −
∑
v2

Xv2 (41)

HfIM = −
∑
v1

∏
c∈∂∗v1

Zc −
∑
v2

∏
c∈∂∗v2

Zc −
∑
c

Xc (42)

δZ⟶
z

x
y

δX⟶

δX⟶

Figure 4: Fractal Ising model with it’s global symmetry.
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▶ KW = ⟨+|∆v1∪v2 UHaah
CZ |+⟩∆c and KW ′ = ⟨+|∆c U fIM

CZ |+⟩∆v1∪v2

▶ Fusion rules:

KW ′ ◦ KW =
∑

subsystem fractal symmetries

KW ◦ KW ′ =
∑

subsystem fractal symmetries
(43)

▶ Strange correlator:

ZtIM = N ⟨ω(K )|KW ′ |+⟩∆c =
∑

sσc=±1

e
K

∑
σv∈∆v1

∪∆v2
s(δ∗σv ) (44)

Partition function of fractal Ising model.
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▶ Strange correlator:

ZtIM = N ⟨ω(K )|KW ′ |+⟩∆c =
∑

sσc=±1

e
K

∑
σv∈∆v1

∪∆v2
s(δ∗σv ) (44)

Partition function of fractal Ising model.



Generalized Ising-gauge theory duality

▶ So we found classical spin models as Strange correlator of fracton
ground state with a product state.

▶ This agrees with the duality of fracton orders with spin models
under generalized lattice gauge theory duality [Vijay,Haah,Fu[6]].
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Conclusions:

▶ We looked at CSS codes and KW duality for them. We also looked
at non-invertible fusion rules and a strange correlator interpretation
for the overlap of CSS code ground state with a product state.

▶ We gave examples involving Plaquette Ising model, X-cube model,
Checkerboard model and Haah’s code.

Future directions:

▶ Strange correlator interpretation for fermion.

▶ Is there a deep understanding for strange correlator in the case of
fractonic phases of matter.

▶ Potential application of strange correlator to fractonic systems.
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